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ABSTRACT 

 
We introduce two new integral operators 𝐹𝛼,𝛽  and 𝐻𝛼,𝛽,𝛾  acting on the class of 

normalized analytic functions 𝒜, where 𝛼, 𝛽 and 𝛾 are complex parameters. Indeed, 

we derive sufficient conditions on the parameters 𝛼, 𝛽 and 𝛾 to obtain that 𝐹𝛼,𝛽(𝑔) 

and 𝐻𝛼,𝛽,𝛾(𝑔) are univalent functions in the open unit disk 𝕌, whenever 𝑔 is univalent 

in 𝕌.  

 
Keywords: Univalent functions, univalence criteria, integral operators, preserving 

univalence.   

 

1. INTRODUCTION AND PRELIMINARY 

Let 𝒜  be the class of functions analytic in the open unit disk 

𝕌: = {𝑧: |𝑧| < 1} and have the form  

 

𝑓(𝑧) = 𝑧 + ∑ ‍∞
𝑛=2 𝑎𝑛𝑧𝑛,      (𝑧 ∈ 𝕌). (1) 

 

Denote by 𝒮 the subclass of 𝒜 consisting of functions univalent (one-to-one) 

in 𝕌.  Ozaki and Nunokawa (1972) proved, for 𝑔 ∈ 𝒜  with 𝑔(𝑧) ≠ 0 in 

0 < |𝑧| < 1, that the condition  

 

|
𝑧2𝑔′(𝑧)

𝑔2(𝑧)
− 1| ≤ 1,      (𝑧 ∈ 𝕌) (2) 

 

is sufficient for 𝑔 to be in the class 𝒮.  

Let us introduce and consider the following integral operators defined on 𝒜 
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by  

 

𝐹𝛼,𝛽(𝑔)(𝑧) = [𝛽 ∫ ‍
𝑧

0
𝑢𝛽−1 (

(𝛼−1)𝑔(𝑢)

𝛼𝑢−𝑔(𝑢)
)

𝛽−1
d𝑢]

1/𝛽

 (3) 

and  

𝐻𝛼,𝛽,𝛾(𝑔)(𝑧) = [𝛽 ∫ ‍
𝑧

0
𝑢𝛽−1 (

𝛼𝑢−𝑔(𝑢)

(𝛼−1)𝑔(𝑢)
)

1/𝛾
d𝑢]

1/𝛽

, (4) 

 

where 𝑔 ∈ 𝒜  with 𝑔(𝑧) ≠ 0  in 0 < |𝑧| < 1  and 𝛼, 𝛽, 𝛾  are certain 

complex numbers. In some occasions during the study of 𝐻𝛼,𝛽,𝛾(𝑔) , the 

parameter 𝛾  cannot be chosen such that 𝛾 = 1/(1 − 𝛽) with 𝛽 ∈ ℝ. We 

treat this case by considering the function 𝐹𝛼,𝛽(𝑔)  independently with 

𝐻𝛼,𝛽,𝛾(𝑔), for 𝛽 ∈ ℝ or ℂ.  

 

Note that, for 𝑓 ∈ 𝒜: 

 

(i) If we substitute 𝑔(𝑢) = 𝛼𝑢𝑓(𝑢)/[(𝛼 − 1)𝑢 + 𝑓(𝑢)]  in (3) where 

𝑓(𝑢) ≠ 0 in 0 < |𝑢| < 1, then 𝐹𝛼,𝛽(𝑔) becomes  

 

𝐺𝛽(𝑓)(𝑧) = [𝛽 ∫ ‍
𝑧

0
[𝑓(𝑢)]𝛽−1 d𝑢]

1

𝛽. (5) 

 

(ii)  If we substitute 𝑔(𝑢) = 𝛼𝑢𝑓′(𝑢)/[𝑓′(𝑢) + 𝛼 − 1]  in (3), where 

𝑓′(𝑢) ≠ 0 in 0 < |𝑢| < 1, then 𝐹𝛼,𝛽(𝑔) becomes  

 

𝐼𝛽(𝑓)(𝑧) = [𝛽 ∫ ‍
𝑧

0
[𝑢𝑓′(𝑢)]𝛽−1 d𝑢]

1

𝛽. (6) 

 

(iii) If we substitute 𝑔(𝑢) = 𝛼𝑢2𝑒𝑓(𝑢)/[𝛼 − 1 + 𝑢𝑒𝑓(𝑢)]  in (3), then 

𝐹𝛼,𝛽(𝑔) becomes  

𝑇𝛽(𝑓)(𝑧) = [𝛽 ∫ ‍
𝑧

0
[𝑢2𝑒𝑓(𝑢)]

𝛽−1
 d𝑢]

1

𝛽
. (7) 

 

(iv)  If we substitute 𝑔(𝑢) = 𝛼𝑢2/[(𝛼 − 1)𝑓(𝑢) + 𝑢] in (4), then 𝐻𝛼,𝛽,𝛾(𝑔) 

becomes  

𝑄𝛽,𝛾(𝑓)(𝑧) = [𝛽 ∫ ‍
𝑧

0
𝑢𝛽−1 (

𝑓(𝑢)

𝑢
)

1

𝛾
 d𝑢]

1

𝛽

. (8) 

 

(v)  If we substitute 𝑔(𝑢) = 𝛼𝑢2/[(𝛼 − 1)𝑓(𝑢) + 𝑢], 𝛽 = 1 and 𝛿 = 1/𝛾 
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in (4), then 𝐻𝛼,𝛽,𝛾(𝑔) becomes  

𝑊𝛿(𝑓)(𝑧) = ∫ ‍
𝑧

0
(

𝑓(𝑢)

𝑢
)

𝛿
 d𝑢. (9) 

 

For the functions in 𝒜 which are satisfying (2) and more general for the 

functions of 𝒮, the problem of preserving univalence under the above integral 

operators (i-v) has been studied by many authors including Pescar (2003, 

2005, 2006, 2006A), Breez and Breez (2003, 2004) and Kim and Merkes 

(1972). 

 

In this article, we study the univalence of 𝐹𝛼,𝛽(𝑔) and 𝐻𝛼,𝛽,𝛾(𝑔) for 

the functions 𝑔  of the general class 𝒮 . Namely, we derive sufficient 

conditions on the parameters 𝛼 , 𝛽  and 𝛾  to obtain that 𝐹𝛼,𝛽(𝑔)  and 

𝐻𝛼,𝛽,𝛾(𝑔) are members of 𝒮, whenever 𝑔 ∈ 𝒮.  

 

To prove our main results, we need the following theorem:   

 

Theorem 1.1. 1(Pascu (1987)). Let 𝛾 ∈ ℂ, 𝑅𝑒𝛾 > 0 and 𝑓 ∈ 𝒜. If  

 

1 − |𝑧|2Re𝛾

Re𝛾
|
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤ 1, 

 

for all 𝑧 ∈ 𝕌, then for all 𝛽 ∈ ℂ, Re𝛽 ≥ Re𝛾, the function  

 

𝐺𝛽(𝑧) = [𝛽 ∫ ‍
𝑧

0

𝑡𝛽−1𝑓′(𝑡)  d𝑡]

1/𝛽

 

 

is univalent in 𝕌. 

 

2. MAIN RESULTS 

Let us prove the following theorem: 

 

Theorem 2.1. 2Let 𝑔 ∈ 𝒮  with 𝑔(𝑧) ≠ 0 for 0 < |𝑧| < 1. If  𝛼 ∈ ℂ with 

0 < |𝛼| < 1/4 and  

 

|1 − 𝛽| ≤
1−4|𝛼|

16|𝛼|
Re𝛽,      for  Re𝛽 ∈ (0,1) (10) 

or  
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|1 − 𝛽| ≤
1−4|𝛼|

16|𝛼|
,      for  Re𝛽 ∈ [1,∞), (11) 

 

then the function 𝐹𝛼,𝛽(𝑔) defined by (3) belongs to 𝒮.  

 

Proof. In view of (3), the function 𝐹𝛼,𝛽(𝑔) can be rewritten as  

𝐹𝛼,𝛽(𝑔)(𝑧) = [𝛽 (
𝛼

𝛼−1
)

1−𝛽

∫ ‍
𝑧

0
𝑢𝛽−1 (

𝑢

𝑔(𝑢)
−

1

𝛼
)

1−𝛽

d𝑢]

1

𝛽

. (12) 

 

Let us consider the function  

 

𝑓(𝑧) = (
𝛼

𝛼−1
)

1−𝛽

∫ ‍
𝑧

0
(

𝑢

𝑔(𝑢)
−

1

𝛼
)

1−𝛽
d𝑢. (13) 

 

We can choose regular branch of the function 𝑧/𝑔(𝑧) to be equal to 1 at the 

origin. Hence the function 𝑓  is regular in 𝕌  and 𝑓(0) = 1 − 𝑓′(0) = 0 , 

which means 𝑓 ∈ 𝒜. A simple computation shows that  

 

𝐹𝛼,𝛽
𝛽−1

(𝑔)(𝑧) ⋅ 𝐹′
𝛼,𝛽

(𝑔)(𝑧) = 𝑧𝛽−1𝑓′(𝑧). (14) 

 

Therefore, 𝐹𝛼,𝛽(𝑔)(0) = 1 − 𝐹′
𝛼,𝛽

(𝑔)(0) = 0  and hence 𝐹𝛼,𝛽(𝑔) ∈ 𝒜 . 

Because 𝑔 ∈ 𝒮, we have  

 

|
𝑧𝑔′(𝑧)

𝑔(𝑧)
| ≤

1+|𝑧|

1−|𝑧|
 (15) 

and  

 

|𝑔(𝑧)| ≥
|𝑧|

(1+|𝑧|)2 (16) 

 

for all 𝑧 ∈ 𝕌. Also, by computations, we get  

 

𝑓′(𝑧) = (
𝛼

𝛼 − 1
)

1−𝛽

(
𝑧

𝑔(𝑧)
−

1

𝛼
)

1−𝛽

, 

 

𝑓′′(𝑧) = (1 − 𝛽) (
𝛼

𝛼 − 1
)

1−𝛽

(
𝑧

𝑔(𝑧)
−

1

𝛼
)

−𝛽

(
𝑔(𝑧) − 𝑧𝑔′(𝑧)

𝑔2(𝑧)
) 

 

and  
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|
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| = |1 − 𝛽| |

𝛼𝑧

𝛼𝑧−𝑔(𝑧)
| |1 −

𝑧𝑔′(𝑧)

𝑔(𝑧)
|, (17) 

 

for all 𝑧 ∈ 𝕌. From (16) and (15), we have for  0 < 𝑟 = |𝑧| < 1 and 0 <
|𝛼| < 1/4, 
 

|
𝛼𝑧

𝑔(𝑧)−𝛼𝑧
| ≤

|𝛼|𝑟

|𝑔(𝑧)|−|𝛼|𝑟
≤

|𝛼|
1

(1+𝑟)2−|𝛼|
≤

4|𝛼|

1−4|𝛼| (18) 

and 

|1 −
𝑧𝑔′(𝑧)

𝑔(𝑧)
| ≤ 1 + |

𝑧𝑔′(𝑧)

𝑔(𝑧)
| ≤

2

1−𝑟
. (19) 

 

Next, for 0 < 𝑅𝑒𝛽 < 1, the function  

 

𝑡: (0,1) → ℝ,    𝑡(𝑥) = 1 − 𝑟2𝑥,    (0 < 𝑟 < 1) 
 

is an increasing function and for |𝑧| = 𝑟, 𝑧 ∈ 𝕌, we obtain 
 

1 − |𝑧|2Re𝛽 ≤ 1 − 𝑟2, (20) 
 

for all 𝑧 ∈ 𝕌. Hence, from (17), (18), (19) and (20), we obtain  

 
1−|𝑧|2Re𝛽

Re𝛽
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤

16|𝛼||1−𝛽|

(1−4|𝛼|)Re𝛽
. (21) 

 

Combining (21) with condition (10), we get 

 
1−|𝑧|2Re𝛽

Re𝛽
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤ 1,      Re𝛽 ∈ (0,1), (22) 

 

for all 𝑧 ∈ 𝕌. Now, for Re𝛽 ≥ 1, we observe that the function  

 

𝑠: [1, ∞) → ℝ,    𝑠(𝑥) =
1 − 𝑟2𝑥

𝑥
,    (0 < 𝑟 < 1) 

 

is a decreasing function and for 𝑟 = |𝑧|, 𝑧 ∈ 𝕌, we have  

 
1−|𝑧|2Re𝛽

Re𝛽
≤ 1 − 𝑟2, (23) 

for all 𝑧 ∈ 𝕌. Hence, from (17), (18), (19) and (23), we get  
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1−|𝑧|2Re𝛽

Re𝛽
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤

16|𝛼||1−𝛽|

1−4|𝛼|
. (24) 

 

Combining (24) with condition (11), we arrive at 

 
1−|𝑧|2Re𝛽

Re𝛽
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤ 1,      Re𝛽 ∈ [1, ∞), (25) 

 

for all 𝑧 ∈ 𝕌. Since  

𝑓′(𝑧) = (
𝛼𝑧 − 𝑔(𝑧)

(𝛼 − 1)𝑔(𝑧)
)

1−𝛽

. 

 

Then, applying (22) and (25) to Theorem 1.1 for 𝛽 = 𝛾, we establish that the 

function 𝐹𝛼,𝛽(𝑔) defined by (3) belongs to 𝒮.  

 

Assuming that 𝛽 is real in Theorem 2.1 gives what follows: 

 

Corollary 2.2. 3Let 𝑔 ∈ 𝒮 with 𝑔(𝑧) ≠ 0 for 0 < |𝑧| < 1. If  𝛼 ∈ ℂ with 

0 < |𝛼| < 1/4 and  

 

𝛽 ∈ [
16|𝛼|

12|𝛼| + 1
,
12|𝛼| + 1

16|𝛼|
], 

 

then the function 𝐹𝛼,𝛽(𝑔) defined by (3) belongs to 𝒮.   

 

Proof. For 𝛽 ∈ (0,1), condition (10) yields  

 

1 − 𝛽 ≤
1 − 4|𝛼|

16|𝛼|
𝛽 

 

and hence the domain of 𝛽 is reduced to  

 

𝛽 ∈ [
16|𝛼|

12|𝛼| + 1
, 1). 

 

For 𝛽 ∈ [1,∞), condition (11) yields  

 

𝛽 − 1 ≤
1 − 4|𝛼|

16|𝛼|
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and hence the domain of 𝛽 is reduced to  

 

𝛽 ∈ [1,
12|𝛼| + 1

16|𝛼|
]. 

 

Thus the result follows by applying Theorem 2.1 for the choice 𝛽 is real.  

 

The univalence of 𝐻𝛼,𝛽,𝛾(𝑔) is studied in the following theorem:  

 

Theorem 2.3.4 Let 𝑔 ∈ 𝒮  with 𝑔(𝑧) ≠ 0  when 0 < |𝑧| < 1 . For  𝛼 ∈ ℂ 

with 0 < |𝛼| < 1/4 and 𝑅𝑒𝛽 ≥ 𝑅𝑒𝛾, if  

 

|𝛾| ≥
16|𝛼|

Reγ(1−4|𝛼|)
,    when  Re𝛾 ∈ (0,1) (26) 

or  

|𝛾| ≥
16|𝛼|

1−4|𝛼|
,    when  Re𝛾 ∈ [1, ∞), (27) 

 

then the function 𝐻𝛼,𝛽,𝛾(𝑔) defined by (4) belongs to 𝒮.  

 

Proof. Consider the function  

 

𝑓(𝑧) = (𝛼 − 1)
−

1

𝛾 ∫  
𝑧

0
(

𝛼𝑢

𝑔(𝑢)
− 1)

1

𝛾
d𝑢. (28) 

 

The function 𝑓 ∈ 𝒜 because as 𝑔 ∈ 𝒮, we can choose a regular branch of the 

function 𝑧/𝑔(𝑧) to be equal to 1 at the origin. Then a simple computation 

shows that  

 

𝐻𝛼,𝛽,𝛾
𝛽−1

(𝑔)(𝑧) ⋅ 𝐻′𝛼,𝛽,𝛾(𝑔)(𝑧) = 𝑧𝛽−1𝑓′(𝑧). (29) 

 

Therefore, 𝐻𝛼,𝛽,𝛾(𝑔)(0) = 1 − 𝐻′
𝛼,𝛽,𝛾

(𝑔)(0) = 0  and so 𝐻𝛼,𝛽,𝛾(𝑔) ∈ 𝒜 . 

Also we have  

𝑓′(𝑧) = (𝛼 − 1)
−

1

𝛾 (
𝛼𝑧

𝑔(𝑧)
− 1)

1

𝛾
, 

 
 

𝑓′′(𝑧) = (𝛼 − 1)
−

1

𝛾 (
𝛼𝑧

𝑔(𝑧)
− 1)

1

𝛾
−1

(
𝛼𝑔(𝑧) − 𝛼𝑧𝑔′(𝑧)

𝛾𝑔2(𝑧)
). 
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This yields  

 

|
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
|     ≤     

1

|𝛾|
|

𝛼𝑧

𝛼𝑧−𝑔(𝑧)
| |1 −

𝑧𝑔′(𝑧)

𝑔(𝑧)
| (30) 

 

for all 𝑧 ∈ 𝕌. Combining (30) with (18) and (19), we obtain for  0 < 𝑟 =
|𝑧| < 1 and 0 < |𝛼| < 1/4,  

 

|
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤

1

|𝛾|
⋅

4|𝛼|

1−4|𝛼|
⋅

2

1−𝑟
. (31) 

 

If 0 < 𝑅𝑒𝛾 < 1, then from (20) and (31), we have 1 − |𝑧|2Re𝛾 ≤ 1 − |𝑧|2 

and  

 
1−|𝑧|2Re 𝛾

Re 𝛾
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤

1

|𝛾|Re 𝛾
⋅

16|𝛼|

1−4|𝛼|
. (32) 

 

Combining (32) with condition (26), we obtain 

 
1−|𝑧|2Re 𝛾

Re 𝛾
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤ 1,      Re𝛾 ∈ (0,1), (33) 

 

for all 𝑧 ∈ 𝕌. If Re𝛾 ≥ 1, then from (23) and (31), we have 1 − |𝑧|2Re𝛾 ≤
(1 − |𝑧|2)Re𝛾 and  

 
1−|𝑧|2Re 𝛾

Re 𝛾
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤

1

|𝛾|
⋅

16|𝛼|

1−4|𝛼|
, (34) 

 

for all 𝑧 ∈ 𝕌. Combining (34) with condition (27), we obtain  

 
1−|𝑧|2Re 𝛾

Re 𝛾
|

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
| ≤ 1,      Re𝛾 ∈ [1, ∞), (35) 

 

for all 𝑧 ∈ 𝕌. Since  

𝑓′(𝑧) = (
𝛼𝑧 − 𝑔(𝑧)

(𝛼 − 1)𝑔(𝑧)
)

1

𝛾

. 

  

Then, applying (33) and (35) to Theorem 1.1 with Re𝛽 ≥ Re𝛾, we establish 

that the function 𝐻𝛼,𝛽,𝛾(𝑔) defined by (4) belongs to 𝒮. 
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Assuming that 𝛽  and 𝛾  are real in Theorem 2.3 with 𝛽 = 𝛾  gives what 

follows: 

 

Corollary 2.4.  5Let 𝑔 ∈ 𝒮 with 𝑔(𝑧) ≠ 0 for 0 < |𝑧| < 1. If  𝛼 ∈ ℂ with 

0 < |𝛼| < 1/4 and  

 

𝛾 ∈ [min {1,
4√|𝛼|

√1 − 4|𝛼|
} , 1] ⋃  [max {1,

16|𝛼|

1 − 4|𝛼|
} , ∞), 

 

then the function 𝐻𝛼,𝛾,𝛾(𝑔) belongs to 𝒮.   

 

Proof. From conditions (26) and (27), we have for 𝛾 ∈ (0,1],  

 

𝛾2 ≥
16|𝛼|

1 − 4|𝛼|
 

 

and hence the domain of 𝛾 is reduced to  

 

𝛾 ∈ [min {1,
4√|𝛼|

√1 − 4|𝛼|
} , 1]. 

 

For 𝛾 ∈ [1,∞), condition (27) yields  

 

𝛾 ∈ [max {1,
16|𝛼|

1 − 4|𝛼|
} , ∞). 

 

Thus the result follows by applying Theorem 2.3 for the choice 𝛽 and 𝛾 are 

real with 𝛽 = 𝛾.  
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